PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress.

نویسندگان

  • Melpo Christofidou-Solomidou
  • Arnaud Scherpereel
  • Rainer Wiewrodt
  • Kimmie Ng
  • Thomas Sweitzer
  • Evguenia Arguiri
  • Vladimir Shuvaev
  • Charalambos C Solomides
  • Steven M Albelda
  • Vladimir R Muzykantov
چکیده

Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide.

Targeting of the antioxidant enzyme catalase to endothelial cells protects against vascular oxidative stress induced by hydrogen peroxide (H(2)O(2))(Am J Physiol 285:L283-L292, 2003; Nat Biotechnol 21:392-398, 2003; Am J Physiol 293:L162-L169, 2007). However, another reactive oxygen species, superoxide anion, is also involved in many forms of vascular oxidative stress, including ischemia/reperf...

متن کامل

Targeted detoxification of selected reactive oxygen species in the vascular endothelium.

Oxidative stress underlies diverse vascular diseases, but its management remains elusive, in part because of our inability to selectively detoxify reactive oxygen species (ROS) in pathological sites and our limited understanding which species need to be eliminated. The antioxidant enzymes (AOEs) superoxide dismutase (SOD) and catalase (which decompose and H(2)O(2), respectively), conjugated wit...

متن کامل

Immunotargeting of glucose oxidase: intracellular production of H2O2and endothelial oxidative stress.

Extracellular and intracellular reactive oxygen species attack different targets and may, therefore, result in different forms of oxidative stress. To specifically study an oxidative stress induced by a regulated intracellular flux of a defined reactive oxygen species in endothelium, we used immunotargeting of the H2O2-generating enzyme glucose oxidase (GOX) conjugated with an antibody to plate...

متن کامل

Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs.

Vascular immunotargeting is a novel approach for site-selective drug delivery to endothelium. To validate the strategy, we conjugated glucose oxidase (GOX) via streptavidin with antibodies to the endothelial cell surface antigen platelet endothelial cell adhesion molecule (PECAM). Previous work documented that 1) anti-PECAM-streptavidin carrier accumulates in the lungs after intravenous injecti...

متن کامل

Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PEC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 285 2  شماره 

صفحات  -

تاریخ انتشار 2003